亚洲精品久久久中文字幕-亚洲精品久久片久久-亚洲精品久久青草-亚洲精品久久婷婷爱久久婷婷-亚洲精品久久午夜香蕉

更多QQ空间微信QQ好友腾讯朋友复制链接
您的位置:首頁/技術文章
文章詳情頁

SQLServer高效解析JSON格式數據的實例過程

【字号: 作者:豬豬瀏覽:137日期:2023-03-06 14:25:40

1. 背景

最近碰到個需求,源數據存在posgtreSQL中,且為JSON格式。那如果在SQLServer中則 無法直接使用,需要先解析成表格行列結構化存儲,再復用。

樣例數據如下

‘[{“key”:“2019-01-01”,“value”:“4500.0”},{“key”:“2019-01-02”,“value”:“4500.0”},{“key”:“2019-01-03”,“value”:“4500.0”},{“key”:“2019-01-04”,“value”:“4500.0”},{“key”:“2019-01-05”,“value”:“4500.0”},{“key”:“2019-01-06”,“value”:“4500.0”},{“key”:“2019-01-07”,“value”:“4500.0”},{“key”:“2019-01-08”,“value”:“4500.0”},{“key”:“2019-01-09”,“value”:“4500.0”},{“key”:“2019-01-10”,“value”:“4500.0”},{“key”:“2019-01-11”,“value”:“4500.0”},{“key”:“2019-01-12”,“value”:“4500.0”},{“key”:“2019-01-13”,“value”:“4500.0”},{“key”:“2019-01-14”,“value”:“4500.0”},{“key”:“2019-01-15”,“value”:“4500.0”},{“key”:“2019-01-16”,“value”:“4500.0”},{“key”:“2019-01-17”,“value”:“4500.0”},{“key”:“2019-01-18”,“value”:“4500.0”},{“key”:“2019-01-19”,“value”:“4500.0”},{“key”:“2019-01-20”,“value”:“4500.0”},{“key”:“2019-01-21”,“value”:“4500.0”},{“key”:“2019-01-22”,“value”:“4500.0”},{“key”:“2019-01-23”,“value”:“4500.0”},{“key”:“2019-01-24”,“value”:“4500.0”},{“key”:“2019-01-25”,“value”:“4500.0”},{“key”:“2019-01-26”,“value”:“4500.0”},{“key”:“2019-01-27”,“value”:“4500.0”},{“key”:“2019-01-28”,“value”:“4500.0”},{“key”:“2019-01-29”,“value”:“4500.0”},{“key”:“2019-01-30”,“value”:“4500.0”},{“key”:“2019-01-31”,“value”:“4500.0”}]’

研究了下方法,可以先將 JSON串 拆成獨立的 key-value對,再來對key-value子串做截取,獲取兩列數據值。

2. 拆串-拆分JSON串至key-value子串

這里主要利用行號和分隔符來組合完成拆分的功能。
參考如下樣例。
主要利用連續數值作為索引(起始值為1),從源字符串每個位置截取長度為1(分隔符的長度)的字符,如果為分隔符,則為有效的、待處理的記錄。有點類似于生物DNA檢測中的鳥槍法,先廣撒網,再根據標記識別、追蹤。

/*
 * Date   : 2020-07-01
 * Author : 飛虹
 * Sample : 拆分 指定分割符的字符串為單列多值
 * Input  : 字符串"jun,cong,haha"
 * Output : 列,值為 "jun", "cong", "haha"
 */
declare @s nvarchar(500) = "jun,cong,haha"
			,@sep nvarchar(5) = ",";
with cte_Num as (
	select 1 as n
	union all
	select n+1 n from cte_Num where n<100
)
select d.s, a.n 
		  ,n-len(replace(left(s, n), @sep, "")) + 1 as pos,
		  CHARINDEX(@sep, s+@sep, n),
  substring(s, n, CHARINDEX(@sep, s+@sep, n)-n) as element
from (select @s as s) as d
 join cte_Num a 
 on
	 n<=len(s) and 
 substring(@sep+s, n, 1) = @sep

3. 取值-創建函數截取key-value串的值

基于第2步的結果,可以將JSON長串拆分為 key-value字符串,如 “2020-01-01”:“98.99”。到這一步,就好辦了。既可以自己寫表值函數來返回結果,也可以直接通過substring來截取。這里開發一個表值函數,來進行封裝。

 /*
  *******************************************************************************
  *     Date : 2020-07-01
  *   Author : 飛虹
  *     Note : 利用patindex正則匹配字符,在while中對字符進行逐個匹配、替換為空。
  * Function : getDateAmt
  *   Input  : key-value字符串,如 "2020-01-01":"98.99"
  *   Output : Table類型(日期列,數值列)。值為 2020-01-01, 98.99 
  *******************************************************************************
 */
 CREATE FUNCTION dbo.getDateAmt(@S VARCHAR(100))
 RETURNS   @tb_rs table(dt date, amt decimal(28,14)) 
 AS
 BEGIN
	 WHILE PATINDEX("%[^0-9,-.]%",@S) > 0
		 BEGIN
			 -- 匹配:去除非數字 、頓號、橫線 的字符
 			 set @s=stuff(@s,patindex("%[^0-9,-.]%",@s),1,"")
		 END
		 insert into @tb_rs 
			select SUBSTRING(@s,1,charindex(",",@s)-1)
				 , substring(@s,charindex(",",@s)+1, len(@s) )
		return
  END
 GO
 
 --測試
 select  * from DBO.getDateAmt("{"key":"2019-01-01","value":"4500.0"")
 

4. 完整樣例

附上完整腳本樣例,全程CTE,直接查詢,預覽效果。

;with cte_t1 as (
			select * from 
			( values("jun","[{"key":"2019-01-01","value":"4500.0"},{"key":"2019-01-02","value":"4500.0"},{"key":"2019-01-03","value":"4500.0"},{"key":"2019-01-04","value":"4500.0"},{"key":"2019-01-05","value":"4500.0"},{"key":"2019-01-06","value":"4500.0"},{"key":"2019-01-07","value":"4500.0"},{"key":"2019-01-08","value":"4500.0"},{"key":"2019-01-09","value":"4500.0"},{"key":"2019-01-10","value":"4500.0"},{"key":"2019-01-11","value":"4500.0"},{"key":"2019-01-12","value":"4500.0"},{"key":"2019-01-13","value":"4500.0"},{"key":"2019-01-14","value":"4500.0"},{"key":"2019-01-15","value":"4500.0"},{"key":"2019-01-16","value":"4500.0"},{"key":"2019-01-17","value":"4500.0"},{"key":"2019-01-18","value":"4500.0"},{"key":"2019-01-19","value":"4500.0"},{"key":"2019-01-20","value":"4500.0"},{"key":"2019-01-21","value":"4500.0"},{"key":"2019-01-22","value":"4500.0"},{"key":"2019-01-23","value":"4500.0"},{"key":"2019-01-24","value":"4500.0"},{"key":"2019-01-25","value":"4500.0"},{"key":"2019-01-26","value":"4500.0"},{"key":"2019-01-27","value":"4500.0"},{"key":"2019-01-28","value":"4500.0"},{"key":"2019-01-29","value":"4500.0"},{"key":"2019-01-30","value":"4500.0"},{"key":"2019-01-31","value":"4500.0"}]")
				   ,("congc","[{"key":"2019-01-01","value":"347.82608695652175"},{"key":"2019-01-02","value":"347.82608695652175"},{"key":"2019-01-03","value":"347.82608695652175"},{"key":"2019-01-04","value":"347.82608695652175"},{"key":"2019-01-07","value":"347.82608695652175"},{"key":"2019-01-08","value":"347.82608695652175"},{"key":"2019-01-09","value":"347.82608695652175"},{"key":"2019-01-10","value":"347.82608695652175"},{"key":"2019-01-11","value":"347.82608695652175"},{"key":"2019-01-14","value":"347.82608695652175"},{"key":"2019-01-15","value":"347.82608695652175"},{"key":"2019-01-16","value":"347.82608695652175"},{"key":"2019-01-17","value":"347.82608695652175"},{"key":"2019-01-18","value":"347.82608695652175"},{"key":"2019-01-21","value":"347.82608695652175"},{"key":"2019-01-22","value":"347.82608695652175"},{"key":"2019-01-23","value":"347.82608695652175"},{"key":"2019-01-24","value":"347.82608695652175"},{"key":"2019-01-25","value":"347.82608695652175"},{"key":"2019-01-28","value":"347.82608695652175"},{"key":"2019-01-29","value":"347.82608695652175"},{"key":"2019-01-30","value":"347.82608695652175"},{"key":"2019-01-31","value":"347.82608695652175"}]")
			) as t(name, jsonStr)
)   , cte_rn as (
				select 1 as rn 
				union all
				select rn+1 from cte_rn where rn < 1000
	)  
	, cte_splitJson as (
    			SELECT  a.name
 							  ,replace(replace(a.jsonStr,"[",""),"]","") as jsonStr
 	 						  ,substring(replace(replace(a.jsonStr,"[",""),"]","")
											, b1.rn
											, charindex("},", replace(replace(a.jsonStr,"[",""),"]","")+"},", b1.rn)-b1.rn ) as value_json
 	   			from cte_t1 a
 					cross join cte_rn b1 
 				where  substring("},"+replace(replace(a.jsonStr,"[",""),"]",""), rn, 2) = "},"
 	)
	select *  
  	from cte_splitJson a
		cross apply dbo.getDateAmt(a.value_json) as t1 
	-- 注意這里生成行號時, 需要設置默認遞歸次數
	option(maxrecursion 0)

5. 問題

經過在個人普通配置PC實測,性能有點堪憂,耗時:數據量 約為15mins:50W ,不太能接受。有興趣或者經歷過的伙伴,出手來協助, 怎么提高效率,或者來個新方案?

到此這篇關于SQLServer高效解析JSON格式數據的文章就介紹到這了,更多相關SQLServer解析JSON數據內容請搜索以前的文章或繼續瀏覽下面的相關文章希望大家以后多多支持!

標簽: MsSQL
主站蜘蛛池模板: 精品久久久久国产免费 | 亚洲日韩色综合视频 | 亚洲 欧美 日韩 在线 | 亚洲精品网址 | 黄色网页在线看 | 成人国产精品视频频 | 国产福利在线视频尤物tv | 成人免费视频网站 | 中文字幕第四页 | 99精品国产成人一区二区在线 | 一级特级欧美aa毛片免费 | 国产精品免费麻豆入口 | 国产精品国色综合久久 | 综合 欧美 亚洲日本 | 亚洲欧美日韩国产精品网 | 欧美日韩乱妇高清免费 | 精品国产tv| a免费看| 色婷婷一区二区三区四区成人 | 国精视频一区二区视频 | 亚洲国产精品一区二区不卡 | 一级生性活免费视频 | 91青青国产在线观看免费 | 日本特黄特色大片免费视频观看 | 亚洲精品日韩一区二区日本 | 日韩在线视频不卡 | 国产精品成人免费视频99 | 综合色天天 | 欧美影院天天5g天天爽 | 国产高清www免费视频 | 网红福利在线 | 欧美日韩中文视频 | 精品国产3p一区二区三区 | 国产欧美日韩三级 | 草莓榴莲向日葵十八岁全微糖 | 免费香蕉视频国产在线看 | 国产精品密蕾丝视频 | 初女破苞国语在线观看免费 | 国产色图区 | 国产人成亚洲第一网站在线播放 | 亚洲欧美一区二区三区国产精品 |