亚洲精品久久久中文字幕-亚洲精品久久片久久-亚洲精品久久青草-亚洲精品久久婷婷爱久久婷婷-亚洲精品久久午夜香蕉

您的位置:首頁技術文章
文章詳情頁

Python機器學習之基于Pytorch實現貓狗分類

瀏覽:70日期:2022-06-17 10:27:50
目錄一、環境配置二、數據集的準備三、貓狗分類的實例四、實現分類預測測試五、參考資料一、環境配置

安裝Anaconda

具體安裝過程,請點擊本文

配置Pytorch

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple torchpip install -i https://pypi.tuna.tsinghua.edu.cn/simple torchvision二、數據集的準備

1.數據集的下載

kaggle網站的數據集下載地址:https://www.kaggle.com/lizhensheng/-2000

2.數據集的分類

將下載的數據集進行解壓操作,然后進行分類分類如下(每個文件夾下包括cats和dogs文件夾)

Python機器學習之基于Pytorch實現貓狗分類

三、貓狗分類的實例

導入相應的庫

# 導入庫import torch.nn.functional as Fimport torch.optim as optimimport torchimport torch.nn as nnimport torch.nn.parallel import torch.optimimport torch.utils.dataimport torch.utils.data.distributedimport torchvision.transforms as transformsimport torchvision.datasets as datasets

設置超參數

# 設置超參數#每次的個數BATCH_SIZE = 20#迭代次數EPOCHS = 10#采用cpu還是gpu進行計算DEVICE = torch.device(’cuda’ if torch.cuda.is_available() else ’cpu’)

圖像處理與圖像增強

# 數據預處理 transform = transforms.Compose([ transforms.Resize(100), transforms.RandomVerticalFlip(), transforms.RandomCrop(50), transforms.RandomResizedCrop(150), transforms.ColorJitter(brightness=0.5, contrast=0.5, hue=0.5), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])

讀取數據集和導入數據

# 讀取數據 dataset_train = datasets.ImageFolder(’E:Cat_And_Dogkagglecats_and_dogs_smalltrain’, transform) print(dataset_train.imgs) # 對應文件夾的label print(dataset_train.class_to_idx) dataset_test = datasets.ImageFolder(’E:Cat_And_Dogkagglecats_and_dogs_smallvalidation’, transform) # 對應文件夾的label print(dataset_test.class_to_idx) # 導入數據 train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=True)

定義網絡模型

# 定義網絡class ConvNet(nn.Module): def __init__(self):super(ConvNet, self).__init__()self.conv1 = nn.Conv2d(3, 32, 3)self.max_pool1 = nn.MaxPool2d(2)self.conv2 = nn.Conv2d(32, 64, 3) self.max_pool2 = nn.MaxPool2d(2) self.conv3 = nn.Conv2d(64, 64, 3) self.conv4 = nn.Conv2d(64, 64, 3) self.max_pool3 = nn.MaxPool2d(2) self.conv5 = nn.Conv2d(64, 128, 3) self.conv6 = nn.Conv2d(128, 128, 3) self.max_pool4 = nn.MaxPool2d(2) self.fc1 = nn.Linear(4608, 512) self.fc2 = nn.Linear(512, 1) def forward(self, x): in_size = x.size(0) x = self.conv1(x) x = F.relu(x) x = self.max_pool1(x) x = self.conv2(x) x = F.relu(x) x = self.max_pool2(x) x = self.conv3(x) x = F.relu(x) x = self.conv4(x) x = F.relu(x) x = self.max_pool3(x) x = self.conv5(x) x = F.relu(x) x = self.conv6(x) x = F.relu(x)x = self.max_pool4(x) # 展開x = x.view(in_size, -1)x = self.fc1(x)x = F.relu(x) x = self.fc2(x) x = torch.sigmoid(x) return x modellr = 1e-4 # 實例化模型并且移動到GPU model = ConvNet().to(DEVICE) # 選擇簡單暴力的Adam優化器,學習率調低 optimizer = optim.Adam(model.parameters(), lr=modellr)

調整學習率

def adjust_learning_rate(optimizer, epoch): '''Sets the learning rate to the initial LR decayed by 10 every 30 epochs''' modellrnew = modellr * (0.1 ** (epoch // 5)) print('lr:',modellrnew) for param_group in optimizer.param_groups: param_group[’lr’] = modellrnew

定義訓練過程

# 定義訓練過程def train(model, device, train_loader, optimizer, epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device).float().unsqueeze(1) optimizer.zero_grad() output = model(data) # print(output) loss = F.binary_cross_entropy(output, target) loss.backward() optimizer.step() if (batch_idx + 1) % 10 == 0: print(’Train Epoch: {} [{}/{} ({:.0f}%)]tLoss: {:.6f}’.format( epoch, (batch_idx + 1) * len(data), len(train_loader.dataset), 100. * (batch_idx + 1) / len(train_loader), loss.item()))# 定義測試過程 def val(model, device, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device).float().unsqueeze(1) output = model(data) # print(output) test_loss += F.binary_cross_entropy(output, target, reduction=’mean’).item() pred = torch.tensor([[1] if num[0] >= 0.5 else [0] for num in output]).to(device) correct += pred.eq(target.long()).sum().item() print(’nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)n’.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset)))

定義保存模型和訓練

# 訓練for epoch in range(1, EPOCHS + 1): adjust_learning_rate(optimizer, epoch) train(model, DEVICE, train_loader, optimizer, epoch) val(model, DEVICE, test_loader) torch.save(model, ’E:Cat_And_Dogkagglemodel.pth’)

訓練結果

Python機器學習之基于Pytorch實現貓狗分類

四、實現分類預測測試

準備預測的圖片進行測試

from __future__ import print_function, divisionfrom PIL import Image from torchvision import transformsimport torch.nn.functional as F import torchimport torch.nn as nnimport torch.nn.parallel# 定義網絡class ConvNet(nn.Module): def __init__(self):super(ConvNet, self).__init__()self.conv1 = nn.Conv2d(3, 32, 3)self.max_pool1 = nn.MaxPool2d(2)self.conv2 = nn.Conv2d(32, 64, 3)self.max_pool2 = nn.MaxPool2d(2)self.conv3 = nn.Conv2d(64, 64, 3)self.conv4 = nn.Conv2d(64, 64, 3)self.max_pool3 = nn.MaxPool2d(2)self.conv5 = nn.Conv2d(64, 128, 3)self.conv6 = nn.Conv2d(128, 128, 3)self.max_pool4 = nn.MaxPool2d(2)self.fc1 = nn.Linear(4608, 512)self.fc2 = nn.Linear(512, 1) def forward(self, x):in_size = x.size(0)x = self.conv1(x)x = F.relu(x)x = self.max_pool1(x)x = self.conv2(x)x = F.relu(x)x = self.max_pool2(x)x = self.conv3(x)x = F.relu(x)x = self.conv4(x)x = F.relu(x)x = self.max_pool3(x)x = self.conv5(x)x = F.relu(x)x = self.conv6(x)x = F.relu(x)x = self.max_pool4(x)# 展開x = x.view(in_size, -1)x = self.fc1(x)x = F.relu(x)x = self.fc2(x)x = torch.sigmoid(x)return x# 模型存儲路徑model_save_path = ’E:Cat_And_Dogkagglemodel.pth’ # ------------------------ 加載數據 --------------------------- ## Data augmentation and normalization for training# Just normalization for validation# 定義預訓練變換# 數據預處理transform_test = transforms.Compose([ transforms.Resize(100), transforms.RandomVerticalFlip(), transforms.RandomCrop(50), transforms.RandomResizedCrop(150), transforms.ColorJitter(brightness=0.5, contrast=0.5, hue=0.5), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]) class_names = [’cat’, ’dog’] # 這個順序很重要,要和訓練時候的類名順序一致 device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') # ------------------------ 載入模型并且訓練 --------------------------- #model = torch.load(model_save_path)model.eval()# print(model) image_PIL = Image.open(’E:Cat_And_Dogkagglecats_and_dogs_smalltestcatscat.1500.jpg’)#image_tensor = transform_test(image_PIL)# 以下語句等效于 image_tensor = torch.unsqueeze(image_tensor, 0)image_tensor.unsqueeze_(0)# 沒有這句話會報錯image_tensor = image_tensor.to(device) out = model(image_tensor)pred = torch.tensor([[1] if num[0] >= 0.5 else [0] for num in out]).to(device)print(class_names[pred])

預測結果

Python機器學習之基于Pytorch實現貓狗分類Python機器學習之基于Pytorch實現貓狗分類

實際訓練的過程來看,整體看準確度不高。而經過測試發現,該模型只能對于貓進行識別,對于狗則會誤判。

五、參考資料

實現貓狗分類

到此這篇關于Python機器學習之基于Pytorch實現貓狗分類的文章就介紹到這了,更多相關Pytorch實現貓狗分類內容請搜索好吧啦網以前的文章或繼續瀏覽下面的相關文章希望大家以后多多支持好吧啦網!

標簽: Python 編程
相關文章:
主站蜘蛛池模板: 22eee在线播放成人免费视频 | 国产成人影院 | 久久男人 | 亚洲欧美日韩国产精品网 | 久久加久久 | 中文字幕一区二区三区不卡 | 久久亚洲精品成人 | 男女一级做片a性视频 | 国产精品视频一区二区三区w | 欧美大jj | 成人自拍视频在线 | 久在草视频| 国产成人高清视频免费播放 | 欧美变态一级毛片 | 在线播放国产一区 | 欧美精品免费在线 | 亚洲欧美日韩一级特黄在线 | www在线观看免费视频 | 伊人久久精品午夜 | 黄网视频在线观看 | 欧洲精品码一区二区三区免费看 | 亚洲精品福利在线 | 91精品国产手机在线版 | 丝袜诱惑中文字幕 | 欧美日韩一区二区三区色综合 | 成人在线激情视频 | 12306播播影院午夜片在线观看 | 国产欧美一区二区三区鸳鸯浴 | 国产美女在线精品免费观看 | 日本成aⅴ人片日本伦 | 成人一级网站 | 国产精品永久免费自在线观看 | 国产精品亚洲专一区二区三区 | 国产91播放 | 成熟热自由日本语亚洲人 | 国产免费一区二区三区 | japenese色系tube日本护士 | 欧美亚洲一区 | 欧美日韩国产高清 | 中文字幕欧美日韩高清 | 欧美一级黄色录像 |