亚洲精品久久久中文字幕-亚洲精品久久片久久-亚洲精品久久青草-亚洲精品久久婷婷爱久久婷婷-亚洲精品久久午夜香蕉

您的位置:首頁(yè)技術(shù)文章
文章詳情頁(yè)

基于Surprise協(xié)同過(guò)濾實(shí)現(xiàn)短視頻推薦方法示例

瀏覽:95日期:2022-06-13 17:04:37
目錄前言環(huán)境Surprise介紹協(xié)同過(guò)濾數(shù)據(jù)集業(yè)務(wù)介紹編碼部分1. PHP請(qǐng)求封裝2. PHP發(fā)起推薦獲取3. 數(shù)據(jù)集生成4. 協(xié)同過(guò)濾服務(wù)5. 基于用戶(hù)推薦6. 基于物品推薦其他寫(xiě)在最后前言

前面一文介紹了通過(guò)基礎(chǔ)的web項(xiàng)目結(jié)構(gòu)實(shí)現(xiàn)簡(jiǎn)單的內(nèi)容推薦,與其說(shuō)那個(gè)是推薦不如說(shuō)是一個(gè)排序算法。因?yàn)闊岫扔?jì)算方式雖然解決了內(nèi)容的時(shí)效質(zhì)量動(dòng)態(tài)化。但是相對(duì)用戶(hù)而言,大家看到的都是幾乎一致的內(nèi)容(不一樣也可能只是某時(shí)間里某視頻的排前或靠后),沒(méi)有做到個(gè)性化的千人千面。

盡管如此,基于內(nèi)容的熱度推薦依然有他獨(dú)特的應(yīng)用場(chǎng)景——熱門(mén)榜單。所以只需要把這個(gè)功能換一個(gè)模塊就可以了,將個(gè)性化推薦留給更擅長(zhǎng)做這方面的算法。

當(dāng)然了,做推薦系統(tǒng)的方法很多,平臺(tái)層面的像spark和今天要講的Surprise。方法層面可以用深度學(xué)習(xí)做,也可以用協(xié)同過(guò)濾,或綜合一起等等。大廠可能就更完善了,在召回階段就有很多通道,比如基于卷積截幀識(shí)別視頻內(nèi)容,文本相似度計(jì)算和現(xiàn)有數(shù)據(jù)支撐,后面又經(jīng)過(guò)清洗,粗排,精排,重排等等流程,可能他們更多的是要保證平臺(tái)內(nèi)容的多樣性。

那我們這里依然走入門(mén)實(shí)際使用為主,能讓我們的項(xiàng)目快速對(duì)接上個(gè)性化推薦,以下就是在原因PHP項(xiàng)目結(jié)構(gòu)上對(duì)接Surprise,實(shí)現(xiàn)用戶(hù)和物品的相似度推薦。

環(huán)境python3.8Flask2.0pandas2.0mysql-connector-python surpriseopenpyxlgunicorn Surprise介紹

Surprise庫(kù)是一款用于構(gòu)建和分析推薦系統(tǒng)的工具庫(kù),他提供了多種推薦算法,包括基線算法、鄰域方法、基于矩陣分解的算法(如SVD、PMF、SVD++、NMF)等。內(nèi)置了多種相似性度量方法,如余弦相似性、均方差(MSD)、皮爾遜相關(guān)系數(shù)等。這些相似性度量方法可以用于評(píng)估用戶(hù)之間的相似性,從而為推薦系統(tǒng)提供重要的數(shù)據(jù)支持。

協(xié)同過(guò)濾數(shù)據(jù)集

既然要基于工具庫(kù)完成協(xié)同過(guò)濾推薦,自然就需要按該庫(kù)的標(biāo)準(zhǔn)進(jìn)行。Surprise也和大多數(shù)協(xié)同過(guò)濾框架類(lèi)似,數(shù)據(jù)集只需要有用戶(hù)對(duì)某個(gè)物品打分分值,如果自己沒(méi)有可以在網(wǎng)上下載免費(fèi)的Movielens或Jester,以下是我根據(jù)業(yè)務(wù)創(chuàng)建的表格,自行參考。

CREATE TABLE `short_video_rating` ( `id` int(11) NOT NULL AUTO_INCREMENT, `user_id` varchar(120) DEFAULT '', `item_id` int(11) DEFAULT '0', `rating` int(11) unsigned DEFAULT '0' COMMENT '評(píng)分', `scoring_set` json DEFAULT NULL COMMENT '行為集合', `create_time` int(11) DEFAULT '0', `action_day_time` int(11) DEFAULT '0' COMMENT '更新當(dāng)天時(shí)間', `update_time` int(11) DEFAULT '0' COMMENT '更新時(shí)間', `delete_time` int(11) DEFAULT '0' COMMENT '刪除時(shí)間', PRIMARY KEY (`id`)) ENGINE=InnoDB AUTO_INCREMENT=107 DEFAULT CHARSET=utf8mb4 COMMENT='用戶(hù)對(duì)視頻評(píng)分表';業(yè)務(wù)介紹

Web業(yè)務(wù)端通過(guò)接口或埋點(diǎn),在用戶(hù)操作的地方根據(jù)預(yù)設(shè)的標(biāo)準(zhǔn)記錄評(píng)分記錄。當(dāng)打分表有數(shù)據(jù)后,用python將SQL記錄轉(zhuǎn)為表格再導(dǎo)入Surprise,根據(jù)不同的算法訓(xùn)練,最后根據(jù)接收的參數(shù)返回對(duì)應(yīng)的推薦top列表。python部分由Flask啟動(dòng)的服務(wù),與php進(jìn)行http交互,后面將以片段代碼說(shuō)明。

編碼部分1. PHP請(qǐng)求封裝<?php/** * Created by ZERO開(kāi)發(fā). * User: 北橋蘇 * Date: 2023/6/26 0026 * Time: 14:43 */namespace app\common\service;class Recommend{ private $condition; private $cfRecommends = []; private $output = []; public function __construct($flag = 1, $lastRecommendIds = [], $userId = '') {$this->condition['flag'] = $flag;$this->condition['last_recommend_ids'] = $lastRecommendIds;$this->condition['user_id'] = $userId; } public function addObserver($cfRecommend) {$this->cfRecommends[] = $cfRecommend; } public function startRecommend() {foreach ($this->cfRecommends as $cfRecommend) { $res = $cfRecommend->recommend($this->condition); $this->output = array_merge($res, $this->output);}$this->output = array_values(array_unique($this->output));return $this->output; }}abstract class cfRecommendBase{ protected $cfGatewayUrl = '127.0.0.1:6016'; protected $limit = 15; public function __construct($limit = 15) {$this->limit = $limit;$this->cfGatewayUrl = config('api.video_recommend.gateway_url'); } abstract public function recommend($condition);}class mcf extends cfRecommendBase{ public function recommend($condition) {//echo 'mcf\n';$videoIdArr = [];$flag = $condition['flag'] ?? 1;$userId = $condition['user_id'] ?? '';$url = '{$this->cfGatewayUrl}/mcf_recommend';if ($flag == 1 && $userId) { //echo 'mcf2\n'; $param['raw_uid'] = (string)$userId; $param['top_k'] = $this->limit; $list = httpRequest($url, $param, 'json'); $videoIdArr = json_decode($list, true) ?? [];}return $videoIdArr; }}class icf extends cfRecommendBase{ public function recommend($condition) {//echo 'icf\n';$videoIdArr = [];$flag = $condition['flag'] ?? 1;$userId = $condition['user_id'] ?? '';$lastRecommendIds = $condition['last_recommend_ids'] ?? [];$url = '{$this->cfGatewayUrl}/icf_recommend';if ($flag > 1 && $lastRecommendIds && $userId) { //echo 'icf2\n'; $itemId = $lastRecommendIds[0] ?? 0; $param['raw_item_id'] = $itemId; $param['top_k'] = $this->limit; $list = httpRequest($url, $param, 'json'); $videoIdArr = json_decode($list, true) ?? [];}return $videoIdArr; }}2. PHP發(fā)起推薦獲取

由于考慮到前期視頻存量不足,是采用協(xié)同過(guò)濾加熱度榜單結(jié)合的方式,前端獲取視頻推薦,接口返回視頻推薦列表的同時(shí)也帶了下次請(qǐng)求的標(biāo)識(shí)(分頁(yè)碼)。這個(gè)分頁(yè)碼用于當(dāng)協(xié)同過(guò)濾服務(wù)掛了或沒(méi)有推薦時(shí),放在榜單列表的分頁(yè)。但是又要保證分頁(yè)數(shù)是否實(shí)際有效,所以當(dāng)頁(yè)碼太大沒(méi)有數(shù)據(jù)返回就通過(guò)遞歸重置為第一頁(yè),也把頁(yè)碼返回前端讓數(shù)據(jù)獲取更流暢。

public static function recommend($flag, $videoIds, $userId) {$nexFlag = $flag + 1;$formatterVideoList = [];try { // 協(xié)同過(guò)濾推薦 $isOpen = config('api.video_recommend.is_open'); $cfVideoIds = []; if ($isOpen == 1) {$recommend = new Recommend($flag, $videoIds, $userId);$recommend->addObserver(new mcf(15));$recommend->addObserver(new icf(15));$cfVideoIds = $recommend->startRecommend(); } // 已讀視頻 $nowTime = strtotime(date('Ymd')); $timeBefore = $nowTime - 60 * 60 * 24 * 100; $videoIdsFilter = self::getUserVideoRatingByTime($userId, $timeBefore); $cfVideoIds = array_diff($cfVideoIds, $videoIdsFilter); // 違規(guī)視頻過(guò)濾 $videoPool = []; $cfVideoIds && $videoPool = ShortVideoModel::listByOrderRaw($cfVideoIds, $flag); // 冷啟動(dòng)推薦 !$videoPool && $videoPool = self::hotRank($userId, $videoIdsFilter, $flag); if ($videoPool) {list($nexFlag, $videoList) = $videoPool;$formatterVideoList = self::formatterVideoList($videoList, $userId); }} catch (\Exception $e) { $preFileName = str::snake(__FUNCTION__); $path = self::getClassName(); write_log('msg:' . $e->getMessage(), $preFileName . '_error', $path);}return [$nexFlag, $formatterVideoList]; }3. 數(shù)據(jù)集生成import osimport mysql.connectorimport datetimeimport pandas as pdnow = datetime.datetime.now()year = now.yearmonth = now.monthday = now.dayfullDate = str(year) + str(month) + str(day)dir_data = './collaborative_filtering/cf_excel'file_path = '{}/dataset_{}.xlsx'.format(dir_data, fullDate)db_config = { 'host': '127.0.0.1', 'database': 'database', 'user': 'user', 'password': 'password'}if not os.path.exists(file_path): cnx = mysql.connector.connect(user=db_config['user'], password=db_config['password'], host=db_config['host'], database=db_config['database']) df = pd.read_sql_query('SELECT user_id, item_id, rating FROM short_video_rating', cnx) print('---------------插入數(shù)據(jù)集----------------') # 將數(shù)據(jù)幀寫(xiě)入Excel文件 df.to_excel(file_path, index=False)if not os.path.exists(file_path): raise IOError('Dataset file is not exists!')4. 協(xié)同過(guò)濾服務(wù)from flask import Flask, request, json, Response, abortfrom collaborative_filtering import cf_itemfrom collaborative_filtering import cf_userfrom collaborative_filtering import cf_mixfrom werkzeug.middleware.proxy_fix import ProxyFixapp = Flask(__name__)@app.route('/')def hello_world(): return abort(404)@app.route('/mcf_recommend', methods=['POST', 'GET'])def get_mcf_recommendation(): json_data = request.get_json() raw_uid = json_data.get('raw_uid') top_k = json_data.get('top_k') recommend_result = cf_mix.collaborative_fitlering(raw_uid, top_k) return Response(json.dumps(recommend_result), mimetype='application/json')@app.route('/ucf_recommend', methods=['POST', 'GET'])def get_ucf_recommendation(): json_data = request.get_json() raw_uid = json_data.get('raw_uid') top_k = json_data.get('top_k') recommend_result = cf_user.collaborative_fitlering(raw_uid, top_k) return Response(json.dumps(recommend_result), mimetype='application/json')@app.route('/icf_recommend', methods=['POST', 'GET'])def get_icf_recommendation(): json_data = request.get_json() raw_item_id = json_data.get('raw_item_id') top_k = json_data.get('top_k') recommend_result = cf_item.collaborative_fitlering(raw_item_id, top_k) return Response(json.dumps(recommend_result), mimetype='application/json')if __name__ == '__main__': app.run(host='0.0.0.0', debug=True, port=6016 )5. 基于用戶(hù)推薦# -*- coding: utf-8 -*-# @File : cf_recommendation.pyfrom __future__ import (absolute_import, division, print_function,unicode_literals)from collections import defaultdictimport osfrom surprise import Datasetfrom surprise import Readerfrom surprise import BaselineOnlyfrom surprise import KNNBasicfrom surprise import KNNBaselinefrom heapq import nlargestimport pandas as pdimport datetimeimport timedef get_top_n(predictions, n=10): top_n = defaultdict(list) for uid, iid, true_r, est, _ in predictions:top_n[uid].append((iid, est)) for uid, user_ratings in top_n.items():top_n[uid] = nlargest(n, user_ratings, key=lambda s: s[1]) return top_nclass PredictionSet(): def __init__(self, algo, trainset, user_raw_id=None, k=40):self.algo = algoself.trainset = trainsetself.k = kif user_raw_id is not None: self.r_uid = user_raw_id self.i_uid = trainset.to_inner_uid(user_raw_id) self.knn_userset = self.algo.get_neighbors(self.i_uid, self.k) user_items = set([j for (j, _) in self.trainset.ur[self.i_uid]]) self.neighbor_items = set() for nnu in self.knn_userset:for (j, _) in trainset.ur[nnu]: if j not in user_items:self.neighbor_items.add(j) def user_build_anti_testset(self, fill=None):fill = self.trainset.global_mean if fill is None else float(fill)anti_testset = []user_items = set([j for (j, _) in self.trainset.ur[self.i_uid]])anti_testset += [(self.r_uid, self.trainset.to_raw_iid(i), fill) for i in self.neighbor_items if i not in user_items]return anti_testsetdef user_build_anti_testset(trainset, user_raw_id, fill=None): fill = trainset.global_mean if fill is None else float(fill) i_uid = trainset.to_inner_uid(user_raw_id) anti_testset = [] user_items = set([j for (j, _) in trainset.ur[i_uid]]) anti_testset += [(user_raw_id, trainset.to_raw_iid(i), fill) for i in trainset.all_items() if i not in user_items] return anti_testset# ================= surprise 推薦部分 ====================def collaborative_fitlering(raw_uid, top_k): now = datetime.datetime.now() year = now.year month = now.month day = now.day fullDate = str(year) + str(month) + str(day) dir_data = './collaborative_filtering/cf_excel' file_path = '{}/dataset_{}.xlsx'.format(dir_data, fullDate) if not os.path.exists(file_path):raise IOError('Dataset file is not exists!') # 讀取數(shù)據(jù)集##################### alldata = pd.read_excel(file_path) reader = Reader(line_format='user item rating') dataset = Dataset.load_from_df(alldata, reader=reader) # 所有數(shù)據(jù)生成訓(xùn)練集 trainset = dataset.build_full_trainset() # ================= BaselineOnly ================== bsl_options = {'method': 'sgd', 'learning_rate': 0.0005} algo_BaselineOnly = BaselineOnly(bsl_options=bsl_options) algo_BaselineOnly.fit(trainset) # 獲得推薦結(jié)果 rset = user_build_anti_testset(trainset, raw_uid) # 測(cè)試休眠5秒,讓客戶(hù)端超時(shí) # time.sleep(5) # print(rset) # exit() predictions = algo_BaselineOnly.test(rset) top_n_baselineonly = get_top_n(predictions, n=5) # ================= KNNBasic ================== sim_options = {'name': 'pearson', 'user_based': True} algo_KNNBasic = KNNBasic(sim_options=sim_options) algo_KNNBasic.fit(trainset) # 獲得推薦結(jié)果 --- 只考慮 knn 用戶(hù)的 predictor = PredictionSet(algo_KNNBasic, trainset, raw_uid) knn_anti_set = predictor.user_build_anti_testset() predictions = algo_KNNBasic.test(knn_anti_set) top_n_knnbasic = get_top_n(predictions, n=top_k) # ================= KNNBaseline ================== sim_options = {'name': 'pearson_baseline', 'user_based': True} algo_KNNBaseline = KNNBaseline(sim_options=sim_options) algo_KNNBaseline.fit(trainset) # 獲得推薦結(jié)果 --- 只考慮 knn 用戶(hù)的 predictor = PredictionSet(algo_KNNBaseline, trainset, raw_uid) knn_anti_set = predictor.user_build_anti_testset() predictions = algo_KNNBaseline.test(knn_anti_set) top_n_knnbaseline = get_top_n(predictions, n=top_k) # =============== 按比例生成推薦結(jié)果 ================== recommendset = set() for results in [top_n_baselineonly, top_n_knnbasic, top_n_knnbaseline]:for key in results.keys(): for recommendations in results[key]:iid, rating = recommendationsrecommendset.add(iid) items_baselineonly = set() for key in top_n_baselineonly.keys():for recommendations in top_n_baselineonly[key]: iid, rating = recommendations items_baselineonly.add(iid) items_knnbasic = set() for key in top_n_knnbasic.keys():for recommendations in top_n_knnbasic[key]: iid, rating = recommendations items_knnbasic.add(iid) items_knnbaseline = set() for key in top_n_knnbaseline.keys():for recommendations in top_n_knnbaseline[key]: iid, rating = recommendations items_knnbaseline.add(iid) rank = dict() for recommendation in recommendset:if recommendation not in rank: rank[recommendation] = 0if recommendation in items_baselineonly: rank[recommendation] += 1if recommendation in items_knnbasic: rank[recommendation] += 1if recommendation in items_knnbaseline: rank[recommendation] += 1 max_rank = max(rank, key=lambda s: rank[s]) if max_rank == 1:return list(items_baselineonly) else:result = nlargest(top_k, rank, key=lambda s: rank[s])return list(result)# print('排名結(jié)果: {}'.format(result))6. 基于物品推薦-*- coding: utf-8 -*-from __future__ import (absolute_import, division, print_function,unicode_literals)from collections import defaultdictimport ioimport osfrom surprise import SVD, KNNBaseline, Reader, Datasetimport pandas as pdimport datetimeimport mysql.connectorimport pickle# ================= surprise 推薦部分 ====================def collaborative_fitlering(raw_item_id, top_k): now = datetime.datetime.now() year = now.year month = now.month day = now.day fullDate = str(year) + str(month) + str(day) # dir_data = './collaborative_filtering/cf_excel' dir_data = './cf_excel' file_path = '{}/dataset_{}.xlsx'.format(dir_data, fullDate) if not os.path.exists(file_path):raise IOError('Dataset file is not exists!') # 讀取數(shù)據(jù)集##################### alldata = pd.read_excel(file_path) reader = Reader(line_format='user item rating') dataset = Dataset.load_from_df(alldata, reader=reader) # 使用協(xié)同過(guò)濾必須有這行,將我們的算法運(yùn)用于整個(gè)數(shù)據(jù)集,而不進(jìn)行交叉驗(yàn)證,構(gòu)建了新的矩陣 trainset = dataset.build_full_trainset() # print(pd.DataFrame(list(trainset.global_mean()))) # exit() # 度量準(zhǔn)則:pearson距離,協(xié)同過(guò)濾:基于item sim_options = {'name': 'pearson_baseline', 'user_based': False} algo = KNNBaseline(sim_options=sim_options) algo.fit(trainset) # 將訓(xùn)練好的模型序列化到磁盤(pán)上 # with open('./cf_models/cf_item_model.pkl', 'wb') as f: # pickle.dump(algo, f) #從磁盤(pán)中讀取訓(xùn)練好的模型 # with open('cf_item_model.pkl', 'rb') as f: # algo = pickle.load(f) # 轉(zhuǎn)換為內(nèi)部id toy_story_inner_id = algo.trainset.to_inner_iid(raw_item_id) # 根據(jù)內(nèi)部id找到最近的10個(gè)鄰居 toy_story_neighbors = algo.get_neighbors(toy_story_inner_id, k=top_k) # 將10個(gè)鄰居的內(nèi)部id轉(zhuǎn)換為item id也就是raw toy_story_neighbors_rids = (algo.trainset.to_raw_iid(inner_id) for inner_id in toy_story_neighbors) result = list(toy_story_neighbors_rids) return result # print(list(toy_story_neighbors_rids))if __name__ == '__main__': res = collaborative_fitlering(15, 20) print(res)其他

推薦服務(wù)生產(chǎn)部署開(kāi)發(fā)環(huán)境下可以通過(guò)python recommend_service.py啟動(dòng),后面部署環(huán)境需要用到gunicorn,方式是安裝后配置環(huán)境變量。代碼里導(dǎo)入werkzeug.middleware.proxy_fix, 修改以下的啟動(dòng)部分以下內(nèi)容,啟動(dòng)改為gunicorn -w 5 -b 0.0.0.0:6016 app:appapp.wsgi_app = ProxyFix(app.wsgi_app)app.run()

模型本地保存隨著業(yè)務(wù)數(shù)據(jù)的累計(jì),自然需要訓(xùn)練的數(shù)據(jù)集也越來(lái)越大,所以后期關(guān)于模型訓(xùn)練周期,可以縮短。也就是定時(shí)訓(xùn)練模型后保存到本地,然后根據(jù)線上的數(shù)據(jù)做出推薦,模型存儲(chǔ)與讀取方法如下。2.1. 模型存儲(chǔ)

sim_options = {'name': 'pearson_baseline', 'user_based': False} algo = KNNBaseline(sim_options=sim_options) algo.fit(trainset) # 將訓(xùn)練好的模型序列化到磁盤(pán)上 with open('./cf_models/cf_item_model.pkl', 'wb') as f: pickle.dump(algo, f)

2.2. 模型讀取

with open('cf_item_model.pkl', 'rb') as f:algo = pickle.load(f) # 轉(zhuǎn)換為內(nèi)部id toy_story_inner_id = algo.trainset.to_inner_iid(raw_item_id) # 根據(jù)內(nèi)部id找到最近的10個(gè)鄰居 toy_story_neighbors = algo.get_neighbors(toy_story_inner_id, k=top_k) # 將10個(gè)鄰居的內(nèi)部id轉(zhuǎn)換為item id也就是raw toy_story_neighbors_rids = (algo.trainset.to_raw_iid(inner_id) for inner_id in toy_story_neighbors) result = list(toy_story_neighbors_rids) return result寫(xiě)在最后

上面的依然只是實(shí)現(xiàn)了推薦系統(tǒng)的一小部分,在做數(shù)據(jù)召回不管可以對(duì)視頻截幀還可以分離音頻,通過(guò)卷積神經(jīng)網(wǎng)絡(luò)識(shí)別音頻種類(lèi)和視頻大致內(nèi)容。再根據(jù)用戶(hù)以往瀏覽記錄形成的標(biāo)簽實(shí)現(xiàn)內(nèi)容匹配等等,這個(gè)還要后期不斷學(xué)習(xí)和完善的。?

以上就是基于Surprise協(xié)同過(guò)濾實(shí)現(xiàn)短視頻推薦方法示例的詳細(xì)內(nèi)容,更多關(guān)于Surprise短視頻推薦的資料請(qǐng)關(guān)注好吧啦網(wǎng)其它相關(guān)文章!

標(biāo)簽: PHP
主站蜘蛛池模板: 亚洲一区二区欧美 | 美女zw喷水视频在线观看 | 国产精品搭讪系列在线观看 | 永久免费人成网ww555kkk手机 | 久久久久激情免费观看 | 日韩综合区 | 亚洲国产福利 | 国产精品久久精品福利网站 | 久色福利 | 伊人久久成人爱综合网 | 欧美日韩亚洲综合久久久 | 中文国产成人精品久久久 | 99久9在线视频 | 亚洲九九夜夜 | 亚洲国产精品免费观看 | 丁香六月婷婷综合 | 亚洲精选在线观看 | 亚洲精品不卡 | 欧美抠逼 | 国产精品无码久久av | 亚洲欧美一区二区三区麻豆 | 加勒比久草 | 一级做a爱过程免费视频时看 | 国产91精品一区二区视色 | 日本丶国产丶欧美色综合 | 国内不卡1区2区 | 国产美女一级做受在线观看 | 久久婷婷五月综合色丁香 | 人喾交性专区免费看 | 成人看片黄a在线看 | 在线观看国产精美视频 | 国产美女精品 | 免费国产成人α片 | 国产mm| 中文字幕色婷婷在线精品中 | 亚洲欧美黄 | 朴妮唛1一30集福利在线播放 | 天堂网ww | 一级黄色片一 | 天天躁日日躁狠狠躁中文字幕老牛 | 精品国产欧美一区二区三区成人 |