Java將CSV的數據發送到kafka的示例
為什么將CSV的數據發到kafka
flink做流式計算時,選用kafka消息作為數據源是常用手段,因此在學習和開發flink過程中,也會將數據集文件中的記錄發送到kafka,來模擬不間斷數據; 整個流程如下:如何將CSV的數據發送到kafka
前面的圖可以看出,讀取CSV再發送消息到kafka的操作是Java應用所為,因此今天的主要工作就是開發這個Java應用,并驗證;
版本信息
JDK:1.8.0_181 開發工具:IntelliJ IDEA 2019.2.1 (Ultimate Edition) 開發環境:Win10 Zookeeper:3.4.13 Kafka:2.4.0(scala:2.12)關于數據集
本次實戰用到的數據集是CSV文件,里面是一百零四萬條淘寶用戶行為數據,該數據來源是阿里云天池公開數據集,我對此數據做了少量調整; 此CSV文件可以在CSDN下載,地址:https://download.csdn.net/download/boling_cavalry/12381698 也可以在我的Github下載,地址:https://raw.githubusercontent.com/zq2599/blog_demos/master/files/UserBehavior.7z 該CSV文件的內容,一共有六列,每列的含義如下表:列名稱 說明 用戶ID 整數類型,序列化后的用戶ID 商品ID 整數類型,序列化后的商品ID 商品類目ID 整數類型,序列化后的商品所屬類目ID 行為類型 字符串,枚舉類型,包括(’pv’, ’buy’, ’cart’, ’fav’) 時間戳 行為發生的時間戳 時間字符串 根據時間戳字段生成的時間字符串
關于該數據集的詳情,請參考《準備數據集用于flink學習》Java應用簡介
編碼前,先把具體內容列出來,然后再挨個實現:
從CSV讀取記錄的工具類:UserBehaviorCsvFileReader 每條記錄對應的Bean類:UserBehavior Java對象序列化成JSON的序列化類:JsonSerializer 向kafka發送消息的工具類:KafkaProducer 應用類,程序入口:SendMessageApplication上述五個類即可完成Java應用的工作,接下來開始編碼吧;
直接下載源碼
如果您不想寫代碼,您可以直接從GitHub下載這個工程的源碼,地址和鏈接信息如下表所示:
名稱 鏈接 備注 項目主頁 https://github.com/zq2599/blog_demos 該項目在GitHub上的主頁 git倉庫地址(https) https://github.com/zq2599/blog_demos.git 該項目源碼的倉庫地址,https協議 git倉庫地址(ssh) git@github.com:zq2599/blog_demos.git 該項目源碼的倉庫地址,ssh協議
這個git項目中有多個文件夾,本章源碼在flinksql這個文件夾下,如下圖紅框所示:
編碼
創建maven工程,pom.xml如下,比較重要的jackson和javacsv的依賴:
<?xml version='1.0' encoding='UTF-8'?><project xmlns='http://maven.apache.org/POM/4.0.0' xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xsi:schemaLocation='http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd'> <modelVersion>4.0.0</modelVersion> <groupId>com.bolingcavalry</groupId> <artifactId>flinksql</artifactId> <version>1.0-SNAPSHOT</version> <properties> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> <flink.version>1.10.0</flink.version> <kafka.version>2.2.0</kafka.version> <java.version>1.8</java.version> <scala.binary.version>2.11</scala.binary.version> <maven.compiler.source>${java.version}</maven.compiler.source> <maven.compiler.target>${java.version}</maven.compiler.target> </properties> <dependencies> <dependency> <groupId>org.apache.kafka</groupId> <artifactId>kafka-clients</artifactId> <version>${kafka.version}</version> </dependency> <dependency> <groupId>com.fasterxml.jackson.core</groupId> <artifactId>jackson-databind</artifactId> <version>2.9.10.1</version> </dependency> <!-- Logging dependencies --> <dependency> <groupId>org.slf4j</groupId> <artifactId>slf4j-log4j12</artifactId> <version>1.7.7</version> <scope>runtime</scope> </dependency> <dependency> <groupId>log4j</groupId> <artifactId>log4j</artifactId> <version>1.2.17</version> <scope>runtime</scope> </dependency> <dependency> <groupId>net.sourceforge.javacsv</groupId> <artifactId>javacsv</artifactId> <version>2.0</version> </dependency> </dependencies> <build> <plugins> <!-- Java Compiler --> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-compiler-plugin</artifactId> <version>3.1</version> <configuration> <source>${java.version}</source> <target>${java.version}</target> </configuration> </plugin> <!-- Shade plugin to include all dependencies --> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-shade-plugin</artifactId> <version>3.0.0</version> <executions> <!-- Run shade goal on package phase --> <execution> <phase>package</phase> <goals> <goal>shade</goal> </goals> <configuration> <artifactSet><excludes></excludes> </artifactSet> <filters><filter> <!-- Do not copy the signatures in the META-INF folder. Otherwise, this might cause SecurityExceptions when using the JAR. --> <artifact>*:*</artifact> <excludes> <exclude>META-INF/*.SF</exclude> <exclude>META-INF/*.DSA</exclude> <exclude>META-INF/*.RSA</exclude> </excludes></filter> </filters> </configuration> </execution> </executions> </plugin> </plugins> </build></project>
從CSV讀取記錄的工具類:UserBehaviorCsvFileReader,后面在主程序中會用到java8的Steam API來處理集合,所以UserBehaviorCsvFileReader實現了Supplier接口:
public class UserBehaviorCsvFileReader implements Supplier<UserBehavior> { private final String filePath; private CsvReader csvReader; public UserBehaviorCsvFileReader(String filePath) throws IOException { this.filePath = filePath; try { csvReader = new CsvReader(filePath); csvReader.readHeaders(); } catch (IOException e) { throw new IOException('Error reading TaxiRecords from file: ' + filePath, e); } } @Override public UserBehavior get() { UserBehavior userBehavior = null; try{ if(csvReader.readRecord()) { csvReader.getRawRecord(); userBehavior = new UserBehavior( Long.valueOf(csvReader.get(0)), Long.valueOf(csvReader.get(1)), Long.valueOf(csvReader.get(2)), csvReader.get(3), new Date(Long.valueOf(csvReader.get(4))*1000L)); } } catch (IOException e) { throw new NoSuchElementException('IOException from ' + filePath); } if (null==userBehavior) { throw new NoSuchElementException('All records read from ' + filePath); } return userBehavior; }}
每條記錄對應的Bean類:UserBehavior,和CSV記錄格式保持一致即可,表示時間的ts字段,使用了JsonFormat注解,在序列化的時候以此來控制格式:
public class UserBehavior { @JsonFormat private long user_id; @JsonFormat private long item_id; @JsonFormat private long category_id; @JsonFormat private String behavior; @JsonFormat(shape = JsonFormat.Shape.STRING, pattern = 'yyyy-MM-dd’T’HH:mm:ss’Z’') private Date ts; public UserBehavior() { } public UserBehavior(long user_id, long item_id, long category_id, String behavior, Date ts) { this.user_id = user_id; this.item_id = item_id; this.category_id = category_id; this.behavior = behavior; this.ts = ts; }}
Java對象序列化成JSON的序列化類:JsonSerializer
public class JsonSerializer<T> { private final ObjectMapper jsonMapper = new ObjectMapper(); public String toJSONString(T r) { try { return jsonMapper.writeValueAsString(r); } catch (JsonProcessingException e) { throw new IllegalArgumentException('Could not serialize record: ' + r, e); } } public byte[] toJSONBytes(T r) { try { return jsonMapper.writeValueAsBytes(r); } catch (JsonProcessingException e) { throw new IllegalArgumentException('Could not serialize record: ' + r, e); } }}
向kafka發送消息的工具類:KafkaProducer:
public class KafkaProducer implements Consumer<UserBehavior> { private final String topic; private final org.apache.kafka.clients.producer.KafkaProducer<byte[], byte[]> producer; private final JsonSerializer<UserBehavior> serializer; public KafkaProducer(String kafkaTopic, String kafkaBrokers) { this.topic = kafkaTopic; this.producer = new org.apache.kafka.clients.producer.KafkaProducer<>(createKafkaProperties(kafkaBrokers)); this.serializer = new JsonSerializer<>(); } @Override public void accept(UserBehavior record) { // 將對象序列化成byte數組 byte[] data = serializer.toJSONBytes(record); // 封裝 ProducerRecord<byte[], byte[]> kafkaRecord = new ProducerRecord<>(topic, data); // 發送 producer.send(kafkaRecord); // 通過sleep控制消息的速度,請依據自身kafka配置以及flink服務器配置來調整 try { Thread.sleep(500); }catch(InterruptedException e){ e.printStackTrace(); } } /** * kafka配置 * @param brokers The brokers to connect to. * @return A Kafka producer configuration. */ private static Properties createKafkaProperties(String brokers) { Properties kafkaProps = new Properties(); kafkaProps.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, brokers); kafkaProps.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, ByteArraySerializer.class.getCanonicalName()); kafkaProps.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, ByteArraySerializer.class.getCanonicalName()); return kafkaProps; }}
最后是應用類SendMessageApplication,CSV文件路徑、kafka的topic和borker地址都在此設置,另外借助java8的Stream API,只需少量代碼即可完成所有工作:
public class SendMessageApplication { public static void main(String[] args) throws Exception { // 文件地址 String filePath = 'D:temp20200502UserBehavior.csv'; // kafka topic String topic = 'user_behavior'; // kafka borker地址 String broker = '192.168.50.43:9092'; Stream.generate(new UserBehaviorCsvFileReader(filePath)) .sequential() .forEachOrdered(new KafkaProducer(topic, broker)); }}
驗證
請確保kafka已經就緒,并且名為user_behavior的topic已經創建; 請將CSV文件準備好; 確認SendMessageApplication.java中的文件地址、kafka topic、kafka broker三個參數準確無誤; 運行SendMessageApplication.java; 開啟一個 控制臺消息kafka消息,參考命令如下:./kafka-console-consumer.sh --bootstrap-server 127.0.0.1:9092 --topic user_behavior --consumer-property group.id=old-consumer-test --consumer-property consumer.id=old-consumer-cl --from-beginning 正常情況下可以立即見到消息,如下圖:
至此,通過Java應用模擬用戶行為消息流的操作就完成了,接下來的flink實戰就用這個作為數據源;
以上就是Java將CSV的數據發送到kafka得示例的詳細內容,更多關于Java CSV的數據發送到kafka的資料請關注好吧啦網其它相關文章!
相關文章: