亚洲精品久久久中文字幕-亚洲精品久久片久久-亚洲精品久久青草-亚洲精品久久婷婷爱久久婷婷-亚洲精品久久午夜香蕉

您的位置:首頁技術文章
文章詳情頁

python實現圖像外邊界跟蹤操作

瀏覽:69日期:2022-07-17 15:54:55

share一些python實現的code

#!/usr/bin/env python#coding=utf-8 import cv2 img = cv2.imread('trace_border2.bmp')[img_h, img_w, img_channel] = img.shape trace = []start_x = 0start_y = 0 gray = img[:,:,1]for h in range(img_h): for w in range(img_w): if (gray[h,w] > 128): gray[h,w] = 255 else: gray[h,w] = 0 #python 跳出多重循環#https://www.cnblogs.com/xiaojiayu/p/5195316.htmlclass getoutofloop(Exception): passtry: for h in range(img_h - 2): for w in range(img_w - 2): if gray[h,w] == 0:start_x = wstart_y = hraise getoutofloopexcept getoutofloop: pass print('Start Point (%d %d)'%(start_x, start_y))trace.append([start_x, start_y]) # 8鄰域 順時針方向搜索neighbor = [[-1,-1],[0,-1],[1,-1],[1,0],[1,1],[0,1],[-1,1],[-1,0]]neighbor_len = len(neighbor) #先從當前點的左上方開始,# 如果左上方也是黑點(邊界點):# 搜索方向逆時針旋轉90 i-=2# 否則:# 搜索方向順時針旋轉45 i+=1i = 0cur_x = start_x + neighbor[i][0]cur_y = start_y + neighbor[i][1] is_contour_point = 0 try: while not ((cur_x == start_x) and (cur_y == start_y)): is_contour_point = 0 while is_contour_point == 0: #neighbor_x = cur_x + if gray[cur_y, cur_x] == 0:is_contour_point = 1trace.append([cur_x, cur_y])i -= 2if i < 0: i += neighbor_len else:i += 1if i >= neighbor_len: i -= neighbor_len #print(i) cur_x = cur_x + neighbor[i][0] cur_y = cur_y + neighbor[i][1]except: print('throw error') for i in range(len(trace)-1): cv2.line(img,(trace[i][0],trace[i][1]), (trace[i+1][0], trace[i+1][1]),(0,0,255),3) cv2.imshow('img', img) cv2.waitKey(10) cv2.rectangle(img,(start_x, start_y),(start_x + 20, start_y + 20),(255,0,0),2)cv2.imshow('img', img)cv2.waitKey(0)cv2.destroyWindow('img')

搜索過程,紅色標記線如下:

python實現圖像外邊界跟蹤操作

補充知識:python實現目標跟蹤(opencv)

1.單目標跟蹤

import cv2import sys (major_ver, minor_ver, subminor_ver) = (cv2.__version__).split(’.’)print(major_ver, minor_ver, subminor_ver) if __name__ == ’__main__’: # 創建跟蹤器 tracker_type = ’MIL’ tracker = cv2.TrackerMIL_create() # 讀入視頻 video = cv2.VideoCapture('./data/1.mp4') # 讀入第一幀 ok, frame = video.read() if not ok: print(’Cannot read video file’) sys.exit() # 定義一個bounding box bbox = (287, 23, 86, 320) bbox = cv2.selectROI(frame, False) # 用第一幀初始化 ok = tracker.init(frame, bbox) while True: ok, frame = video.read() if not ok: break # Start timer timer = cv2.getTickCount() # Update tracker ok, bbox = tracker.update(frame) # Cakculate FPS fps = cv2.getTickFrequency() / (cv2.getTickCount() - timer) # Draw bonding box if ok: p1 = (int(bbox[0]), int(bbox[1])) p2 = (int(bbox[0] + bbox[2]), int(bbox[1] + bbox[3])) cv2.rectangle(frame, p1, p2, (255,0,0), 2, 1) else: cv2.putText(frame, 'Tracking failed detected', (100, 80), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 255), 2) # 展示tracker類型 cv2.putText(frame, tracker_type+'Tracker', (100, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (50, 170, 50), 2) # 展示FPS cv2.putText(frame, 'FPS:'+str(fps), (100, 50), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (50, 170, 50), 2) # Result cv2.imshow('Tracking', frame) # Exit k = cv2.waitKey(1) & 0xff if k ==27 : break

2.多目標跟蹤

使用GOTURN作為跟蹤器時,須將goturn.caffemodel和goturn.prototxt放到工作目錄才能運行,解決問題鏈接https://stackoverflow.com/questions/48802603/getting-deep-learning-tracker-goturn-to-run-opencv-python

import cv2import sys (major_ver, minor_ver, subminor_ver) = (cv2.__version__).split(’.’)print(major_ver, minor_ver, subminor_ver) if __name__ == ’__main__’: # 創建跟蹤器 # ’BOOSTING’, ’MIL’,’KCF’, ’TLD’, ’MEDIANFLOW’, ’GOTURN’, ’MOSSE’ tracker_type = ’MIL’ tracker = cv2.MultiTracker_create() # 創建窗口 cv2.namedWindow('Tracking') # 讀入視頻 video = cv2.VideoCapture('./data/1.mp4') # 讀入第一幀 ok, frame = video.read() if not ok: print(’Cannot read video file’) sys.exit() # 定義一個bounding box box1 = cv2.selectROI('Tracking', frame) box2 = cv2.selectROI('Tracking', frame) box3 = cv2.selectROI('Tracking', frame) # 用第一幀初始化 ok = tracker.add(cv2.TrackerMIL_create(), frame, box1) ok1 = tracker.add(cv2.TrackerMIL_create(), frame, box2) ok2 = tracker.add(cv2.TrackerMIL_create(), frame, box3) while True: ok, frame = video.read() if not ok: break # Start timer timer = cv2.getTickCount() # Update tracker ok, boxes = tracker.update(frame) print(ok, boxes) # Cakculate FPS fps = cv2.getTickFrequency() / (cv2.getTickCount() - timer) for box in boxes: # Draw bonding box if ok:p1 = (int(box[0]), int(box[1]))p2 = (int(box[0] + box[2]), int(box[1] + box[3]))cv2.rectangle(frame, p1, p2, (255, 0, 0), 2, 1) else:cv2.putText(frame, 'Tracking failed detected', (100, 80), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 255),2) # 展示tracker類型 cv2.putText(frame, tracker_type+'Tracker', (100, 20), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (50, 170, 50), 2) # 展示FPS cv2.putText(frame, 'FPS:'+str(fps), (100, 50), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (50, 170, 50), 2) # Result cv2.imshow('Tracking', frame) # Exit k = cv2.waitKey(1) & 0xff if k ==27 : break

以上這篇python實現圖像外邊界跟蹤操作就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持好吧啦網。

標簽: Python 編程
相關文章:
主站蜘蛛池模板: 国产精品一区二区免费福利视频 | 国产一区二区三区在线免费 | 欧美一a一片一级一片 | 亚洲精品一区二区ai换脸 | 国产剧情一区二区 | 色在线视频 | gay片免费网站毛片 gogo大胆全球裸xxxx图片 | 久久精品国产线看观看亚洲 | 国产精品欧美日韩 | 久久国产精品久久 | 久久免费观看国产精品88av | 欧美亚洲精品一区二三 | 亚洲精品午夜一区二区在线观看 | 亚洲欧美另类色图 | 亚洲精品图区 | 欧美国产永久免费看片 | 精品欧美一区二区三区四区 | 日本特级黄色录像 | 一级黄色片一 | 日韩一级欧美一级一级国产 | 美女网站免费久久久久久久 | 久久99精品久久久久久 | 精品一区二区久久久久久久网站 | 欧美老人另类视频 | 手机日韩看片 | 欧美久久伊人 | 国产 日韩 在线 亚洲 字幕 中文 | 国产欧美另类久久久精品免费 | 国产久| 国产日韩欧美一区二区三区在线 | 在线污污视污免费 | 尤物视频在线网站 | 91精品国产91久久久久 | 亚洲午夜精品在线 | 永久免费观看午夜视频在线 | 国产九九免费视频 | 全免费午夜一级毛片真人 | 欧美日韩免费大片 | 久久综合久久精品 | 成人欧美一区二区三区视频不卡 | 国拍在线精品视频免费观看 |