亚洲精品久久久中文字幕-亚洲精品久久片久久-亚洲精品久久青草-亚洲精品久久婷婷爱久久婷婷-亚洲精品久久午夜香蕉

您的位置:首頁技術文章
文章詳情頁

Python繪圖實現臺風路徑可視化代碼實例

瀏覽:2日期:2022-07-07 13:15:50

臺風是重大災害性天氣,臺風引起的直接災害通常由三方面造成,狂風、暴雨、風暴潮,除此以外臺風的這些災害極易誘發城市內澇、房屋倒塌、山洪、泥石流等次生災害。正因如此,臺風在科研和業務工作中是研究的重點。希望這次臺風路徑可視化可以給予大家一點點幫助。

臺風路徑的獲取

中國氣象局(CMA)

中國氣象局(CMA)的臺風最佳路徑數據集(BST),BST是之后對歷史臺風路徑進行校正后發布的,其經緯度、強度、氣壓具有更高的可靠性,但是時間分辨率為6小時,部分3小時,這一點不如觀測數據。下載地址:

http://tcdata.typhoon.org.cn/

溫州臺風網

溫州臺風網的數據是實時發布數據的記錄,時間分辨率最高達1小時,對于臺風軌跡具有更加精細化的表述。下載地址:

http://www.wztf121.com/

示例

導入模塊并讀取數據,使用BST的2018年臺風路徑數據作為示例,已經將原始的txt文件轉換為xls文件。

import os, globimport pandas as pdimport numpy as npimport shapely.geometry as sgeomimport matplotlib.pyplot as pltfrom matplotlib.image import imreadfrom matplotlib.animation import FuncAnimationimport matplotlib.lines as mlinesimport cartopy.crs as ccrsimport cartopy.feature as cfeatfrom cartopy.mpl.ticker import LongitudeFormatter,LatitudeFormatterimport cartopy.io.shapereader as shpreaderimport cartopy.io.img_tiles as cimgtfrom PIL import Imageimport warnings warnings.filterwarnings(’ignore’)df = pd.read_csv(’./2018typhoon.csv’)

定義等級色標

def get_color(level): global color if level == ’熱帶低壓’ or level == ’熱帶擾動’: color=’#FFFF00’ elif level == ’熱帶風暴’: color=’#6495ED’ elif level == ’強熱帶風暴’: color=’#3CB371’ elif level == ’臺風’: color=’#FFA500’ elif level == ’強臺風’: color=’#FF00FF’ elif level == ’超強臺風’: color=’#DC143C’ return color

定義底圖函數

def create_map(title, extent): fig = plt.figure(figsize=(12, 8)) ax = fig.add_subplot(1, 1, 1, projection=ccrs.PlateCarree()) url = ’http://map1c.vis.earthdata.nasa.gov/wmts-geo/wmts.cgi’ layer = ’BlueMarble_ShadedRelief’ ax.add_wmts(url, layer) ax.set_extent(extent,crs=ccrs.PlateCarree()) gl = ax.gridlines(draw_labels=False, linewidth=1, color=’k’, alpha=0.5, linestyle=’--’) gl.xlabels_top = gl.ylabels_right = False ax.set_xticks(np.arange(extent[0], extent[1]+5, 5)) ax.set_yticks(np.arange(extent[2], extent[3]+5, 5)) ax.xaxis.set_major_formatter(LongitudeFormatter()) ax.xaxis.set_minor_locator(plt.MultipleLocator(1)) ax.yaxis.set_major_formatter(LatitudeFormatter()) ax.yaxis.set_minor_locator(plt.MultipleLocator(1)) ax.tick_params(axis=’both’, labelsize=10, direction=’out’) a = mlines.Line2D([],[],color=’#FFFF00’,marker=’o’,markersize=7, label=’TD’,ls=’’) b = mlines.Line2D([],[],color=’#6495ED’, marker=’o’,markersize=7, label=’TS’,ls=’’) c = mlines.Line2D([],[],color=’#3CB371’, marker=’o’,markersize=7, label=’STS’,ls=’’) d = mlines.Line2D([],[],color=’#FFA500’, marker=’o’,markersize=7, label=’TY’,ls=’’) e = mlines.Line2D([],[],color=’#FF00FF’, marker=’o’,markersize=7, label=’STY’,ls=’’) f = mlines.Line2D([],[],color=’#DC143C’, marker=’o’,markersize=7, label=’SSTY’,ls=’’) ax.legend(handles=[a,b,c,d,e,f], numpoints=1, handletextpad=0, loc=’upper left’, shadow=True) plt.title(f’{title} Typhoon Track’, fontsize=15) return ax

定義繪制單個臺風路徑方法,并繪制2018年第18號臺風溫比亞。

def draw_single(df): ax = create_map(df[’名字’].iloc[0], [110, 135, 20, 45]) for i in range(len(df)): ax.scatter(list(df[’經度’])[i], list(df[’緯度’])[i], marker=’o’, s=20, color=get_color(list(df[’強度’])[i])) for i in range(len(df)-1): pointA = list(df[’經度’])[i],list(df[’緯度’])[i] pointB = list(df[’經度’])[i+1],list(df[’緯度’])[i+1] ax.add_geometries([sgeom.LineString([pointA, pointB])], color=get_color(list(df[’強度’])[i+1]),crs=ccrs.PlateCarree()) plt.savefig(’./typhoon_one.png’)draw_single(df[df[’編號’]==1818])

Python繪圖實現臺風路徑可視化代碼實例

定義繪制多個臺風路徑方法,并繪制2018年全年的全部臺風路徑。

def draw_multi(df): L = list(set(df[’編號’])) L.sort(key=list(df[’編號’]).index) ax = create_map(’2018’, [100, 180, 0, 45]) for number in L: df1 = df[df[’編號’]==number] for i in range(len(df1)-1): pointA = list(df1[’經度’])[i],list(df1[’緯度’])[i] pointB = list(df1[’經度’])[i+1],list(df1[’緯度’])[i+1] ax.add_geometries([sgeom.LineString([pointA, pointB])], color=get_color(list(df1[’強度’])[i+1]),crs=ccrs.PlateCarree()) plt.savefig(’./typhoon_multi.png’)draw_multi(df)

Python繪圖實現臺風路徑可視化代碼實例

定義繪制單個臺風gif路徑演變方法,并繪制2018年第18號臺風的gif路徑圖。

def draw_single_gif(df): for state in range(len(df.index))[:]: ax = create_map(f’{df['名字'].iloc[0]} {df['時間'].iloc[state]}’, [110, 135, 20, 45]) for i in range(len(df[:state])): ax.scatter(df[’經度’].iloc[i], df[’緯度’].iloc[i], marker=’o’, s=20, color=get_color(df[’強度’].iloc[i])) for i in range(len(df[:state])-1): pointA = df[’經度’].iloc[i],df[’緯度’].iloc[i] pointB = df[’經度’].iloc[i+1],df[’緯度’].iloc[i+1] ax.add_geometries([sgeom.LineString([pointA, pointB])], color=get_color(df[’強度’].iloc[i+1]),crs=ccrs.PlateCarree()) print(f’正在繪制第{state}張軌跡圖’) plt.savefig(f’./{df['名字'].iloc[0]}{str(state).zfill(3)}.png’, bbox_inches=’tight’) # 將圖片拼接成動畫 imgFiles = list(glob.glob(f’./{df['名字'].iloc[0]}*.png’)) images = [Image.open(fn) for fn in imgFiles] im = images[0] filename = f’./track_{df['名字'].iloc[0]}.gif’ im.save(fp=filename, format=’gif’, save_all=True, append_images=images[1:], duration=500)draw_single_gif(df[df[’編號’]==1818])

Python繪圖實現臺風路徑可視化代碼實例

以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持好吧啦網。

標簽: Python 編程
相關文章:
主站蜘蛛池模板: 丝袜美腿秘书ol在线播放 | 美国美女一级片 | 国产美女亚洲精品久久久综合91 | 国产ppp在线视频在线观看 | 美女大片高清特黄a大片 | 91视频免费观看高清观看完整 | 国产美女白丝袜精品_a不卡 | 一区二区福利 | 1024视频在线观看国产成人 | 精品无码一区在线观看 | 亚洲国产精品久久婷婷 | 亚洲高清免费观看 | 国产精品久久久久久久久久久不卡 | 黄色九九| 亚洲色图综合在线 | 男女无遮挡边做边吃视频免费 | 婷婷亚洲天堂 | japenese色系tube日本护士 | 欧美一区二区三区在线观看免费 | 91视频三级| 国产成人拍精品视频网 | 中国内地毛片免费高清 | 51自拍视频 | 久久亚洲国产精品一区二区 | 五月天爱爱视频 | 99在线国内精品自产拍 | 高h猛烈做哭bl壮汉受小说 | 国产不卡一卡2卡三卡4卡5卡在线 | 国产在线乱码在线视频 | 亚洲男女免费视频 | 婷婷久久激情啪啪 | 成人精品一区二区三区中文字幕 | 国产精品你懂的在线播放 | 美女精品在线 | 日本一级毛片无遮挡 | 欧美精品一区二区三区在线 | 亚洲精品一区乱码在线观看 | 日韩福利视频一区 | 免费一级 一片一毛片 | 老司机成人精品视频lsj | 国产精品视频1区 |