python 檢測(cè)圖片是否有馬賽克
首先是Canny邊緣檢測(cè),將圖片的邊緣檢測(cè)出來,參考博客https://www.cnblogs.com/techyan1990/p/7291771.html
原理講的很清晰,給原博主一個(gè)贊
邊緣檢測(cè)之后按照正方形檢索來判定是否是馬賽克內(nèi)容
原理知曉了之后就很好做了
話說MATLAB轉(zhuǎn)化為python的過程還是很有趣的
from PIL import Imageimport numpy as npimport mathimport warnings#算法來源,博客https://www.cnblogs.com/techyan1990/p/7291771.html和https://blog.csdn.net/zhancf/article/details/49736823highhold=200#高閾值lowhold=40#低閾值warnings.filterwarnings('ignore')demo=Image.open('noise_check//23.jpg')im=np.array(demo.convert(’L’))#灰度化矩陣print(im.shape)print(im.dtype)height=im.shape[0]#尺寸width=im.shape[1]gm=[[0 for i in range(width)]for j in range(height)]#梯度強(qiáng)度gx=[[0 for i in range(width)]for j in range(height)]#梯度xgy=[[0 for i in range(width)]for j in range(height)]#梯度ytheta=0#梯度方向角度360度dirr=[[0 for i in range(width)]for j in range(height)]#0,1,2,3方位判定值highorlow=[[0 for i in range(width)]for j in range(height)]#強(qiáng)邊緣、弱邊緣、忽略判定值2,1,0rm=np.array([[0 for i in range(width)]for j in range(height)])#輸出矩陣#高斯濾波平滑,3x3for i in range(1,height-1,1): for j in range(1,width-1,1): rm[i][j]=im[i-1][j-1]*0.0924+im[i-1][j]*0.1192+im[i-1][j+1]*0.0924+im[i][j-1]*0.1192+im[i][j]*0.1538+im[i][j+1]*0.1192+im[i+1][j-1]*0.0924+im[i+1][j]*0.1192+im[i+1][j+1]*0.0924for i in range(1,height-1,1):#梯度強(qiáng)度和方向 for j in range(1,width-1,1): gx[i][j]=-rm[i-1][j-1]+rm[i-1][j+1]-2*rm[i][j-1]+2*rm[i][j+1]-rm[i+1][j-1]+rm[i+1][j+1] gy[i][j]=rm[i-1][j-1]+2*rm[i-1][j]+rm[i-1][j+1]-rm[i+1][j-1]-2*rm[i+1][j]-rm[i+1][j+1] gm[i][j]=pow(gx[i][j]*gx[i][j]+gy[i][j]*gy[i][j],0.5) theta=math.atan(gy[i][j]/gx[i][j])*180/3.1415926 if theta>=0 and theta<45: dirr[i][j]=2 elif theta>=45 and theta<90: dirr[i][j]=3 elif theta>=90 and theta<135: dirr[i][j]=0 else: dirr[i][j]=1for i in range(1,height-1,1):#非極大值抑制,雙閾值監(jiān)測(cè) for j in range(1,width-1,1): NW=gm[i-1][j-1] N=gm[i-1][j] NE=gm[i-1][j+1] W=gm[i][j-1] E=gm[i][j+1] SW=gm[i+1][j-1] S=gm[i+1][j] SE=gm[i+1][j+1] if dirr[i][j]==0: d=abs(gy[i][j]/gx[i][j]) gp1=(1-d)*E+d*NE gp2=(1-d)*W+d*SW elif dirr[i][j]==1: d=abs(gx[i][j]/gy[i][j]) gp1=(1-d)*N+d*NE gp2=(1-d)*S+d*SW elif dirr[i][j]==2: d=abs(gx[i][j]/gy[i][j]) gp1=(1-d)*N+d*NW gp2=(1-d)*S+d*SE elif dirr[i][j]==3: d=abs(gy[i][j]/gx[i][j]) gp1=(1-d)*W+d*NW gp2=(1-d)*E+d*SE if gm[i][j]>=gp1 and gm[i][j]>=gp2: if gm[i][j]>=highhold: highorlow[i][j]=2 rm[i][j]=1 elif gm[i][j]>=lowhold: highorlow[i][j]=1 else: highorlow[i][j]=0 rm[i][j]=0 else: highorlow[i][j]=0 rm[i][j]=0for i in range(1,height-1,1):#抑制孤立低閾值點(diǎn) for j in range(1,width-1,1): if highorlow[i][j]==1 and (highorlow[i-1][j-1]==2 or highorlow[i-1][j]==2 or highorlow[i-1][j+1]==2 or highorlow[i][j-1]==2 or highorlow[i][j+1]==2 or highorlow[i+1][j-1]==2 or highorlow[i+1][j]==2 or highorlow[i+1][j+1]==2): #highorlow[i][j]=2 rm[i][j]=1#img=Image.fromarray(rm)#矩陣化為圖片#img.show()#正方形法判定是否有馬賽克value=35lowvalue=16imgnumber=[0 for i in range(value)]for i in range(1,height-1,1):#性價(jià)比高的8點(diǎn)判定法 for j in range(1,width-1,1): for k in range(lowvalue,value): count=0 if i+k-1>=height or j+k-1>=width:continue if rm[i][j]!=0:count+=1#4個(gè)頂點(diǎn) if rm[i+k-1][j]!=0:count+=1 if rm[i][j+k-1]!=0:count+=1 if rm[i+k-1][j+k-1]!=0:count+=1 e=(k-1)//2 if rm[i+e][j]!=0:count+=1 if rm[i][j+e]!=0:count+=1 if rm[i+e][j+k-1]!=0:count+=1 if rm[i+k-1][j+e]!=0:count+=1 if count>=6: imgnumber[k]+=1for i in range(lowvalue,value): print('length:{} number:{}'.format(i,imgnumber[i]))
結(jié)果圖可以上一下了
可以看出在一定程度上能夠檢測(cè)出馬賽克內(nèi)容
原圖
邊緣圖案
正方形數(shù)量
以上就是python 檢測(cè)圖片是否有馬賽克的詳細(xì)內(nèi)容,更多關(guān)于python 檢測(cè)圖片馬賽克的資料請(qǐng)關(guān)注好吧啦網(wǎng)其它相關(guān)文章!
相關(guān)文章:
1. Java基于redis和mysql實(shí)現(xiàn)簡(jiǎn)單的秒殺(附demo)2. php讀取xml中某個(gè)元素的內(nèi)容(PHP5以上才支持)3. IntelliJ IDEA設(shè)置編碼格式的方法4. 如何用python識(shí)別滑塊驗(yàn)證碼中的缺口5. SpringBoot+SpringCache實(shí)現(xiàn)兩級(jí)緩存(Redis+Caffeine)6. IDEA SpringBoot 項(xiàng)目配置Swagger2的詳細(xì)教程7. Kotlin + Flow 實(shí)現(xiàn)Android 應(yīng)用初始化任務(wù)啟動(dòng)庫8. Docker究竟是什么 為什么這么流行 它的優(yōu)點(diǎn)和缺陷有哪些?9. ASP.NET MVC視圖頁使用jQuery傳遞異步數(shù)據(jù)的幾種方式詳解10. AJAX實(shí)現(xiàn)省市縣三級(jí)聯(lián)動(dòng)效果
