python基于scrapy爬取京東筆記本電腦數(shù)據(jù)并進(jìn)行簡(jiǎn)單處理和分析
pip install scrapy fake-useragent requests selenium virtualenv -i https://pypi.douban.com/simple
1.1 創(chuàng)建虛擬環(huán)境
切換到指定目錄創(chuàng)建
virtualenv .venv
創(chuàng)建完記得激活虛擬環(huán)境
1.2 創(chuàng)建項(xiàng)目
scrapy startproject 項(xiàng)目名稱
1.3 使用pycharm打開(kāi)項(xiàng)目,將創(chuàng)建的虛擬環(huán)境配置到項(xiàng)目中來(lái)1.4 創(chuàng)建京東spider
scrapy genspider 爬蟲(chóng)名稱 url
1.5 修改允許訪問(wèn)的域名,刪除https:
二、問(wèn)題分析爬取數(shù)據(jù)的思路是先獲取首頁(yè)的基本信息,在獲取詳情頁(yè)商品詳細(xì)信息;爬取京東數(shù)據(jù)時(shí),只返回40條數(shù)據(jù),這里,作者使用selenium,在scrapy框架中編寫(xiě)下載器中間件,返回頁(yè)面所有數(shù)據(jù)。爬取的字段分別是:
商品價(jià)格
商品評(píng)數(shù)
商品店家
商品SKU(京東可直接搜索到對(duì)應(yīng)的產(chǎn)品)
商品標(biāo)題
商品詳細(xì)信息
三、spiderimport reimport scrapyfrom lianjia.items import jd_detailItemclass JiComputerDetailSpider(scrapy.Spider): name = ’ji_computer_detail’ allowed_domains = [’search.jd.com’, ’item.jd.com’] start_urls = [’https://search.jd.com/Search?keyword=%E7%AC%94%E8%AE%B0%E6%9C%AC%E7%94%B5%E8%84%91&suggest=1.def.0.base&wq=%E7%AC%94%E8%AE%B0%E6%9C%AC%E7%94%B5%E8%84%91&page=1&s=1&click=0’] def parse(self, response):lls = response.xpath(’//ul[@class='gl-warp clearfix']/li’)for ll in lls: item = jd_detailItem() computer_price = ll.xpath(’.//div[@class='p-price']/strong/i/text()’).extract_first() computer_commit = ll.xpath(’.//div[@class='p-commit']/strong/a/text()’).extract_first() computer_p_shop = ll.xpath(’.//div[@class='p-shop']/span/a/text()’).extract_first() item[’computer_price’] = computer_price item[’computer_commit’] = computer_commit item[’computer_p_shop’] = computer_p_shop meta = {’item’: item } shop_detail_url = ll.xpath(’.//div[@class='p-img']/a/@href’).extract_first() shop_detail_url = ’https:’ + shop_detail_url yield scrapy.Request(url=shop_detail_url, callback=self.detail_parse, meta=meta)for i in range(2, 200, 2): next_page_url = f’https://search.jd.com/Search?keyword=%E7%AC%94%E8%AE%B0%E6%9C%AC%E7%94%B5%E8%84%91&suggest=1.def.0.base&wq=%E7%AC%94%E8%AE%B0%E6%9C%AC%E7%94%B5%E8%84%91&page={i}&s=116&click=0’ yield scrapy.Request(url=next_page_url, callback=self.parse) def detail_parse(self, response):item = response.meta.get(’item’)computer_sku = response.xpath(’//a[@class='notice J-notify-sale']/@data-sku’).extract_first()item[’computer_sku’] = computer_skucomputer_title = response.xpath(’//div[@class='sku-name']/text()’).extract_first().strip()computer_title = ’’.join(re.findall(’S’, computer_title))item[’computer_title’] = computer_titlecomputer_detail = response.xpath(’string(//ul[@class='parameter2 p-parameter-list'])’).extract_first().strip()computer_detail = ’’.join(re.findall(’S’, computer_detail))item[’computer_detail’] = computer_detailyield item四、item
class jd_detailItem(scrapy.Item): # define the fields for your item here like: computer_sku = scrapy.Field() computer_price = scrapy.Field() computer_title = scrapy.Field() computer_commit = scrapy.Field() computer_p_shop = scrapy.Field() computer_detail = scrapy.Field()五、setting
import randomfrom fake_useragent import UserAgentua = UserAgent()USER_AGENT = ua.randomROBOTSTXT_OBEY = FalseDOWNLOAD_DELAY = random.uniform(0.5, 1)DOWNLOADER_MIDDLEWARES = { ’lianjia.middlewares.jdDownloaderMiddleware’: 543}ITEM_PIPELINES = { ’lianjia.pipelines.jd_csv_Pipeline’: 300}六、pipelines
class jd_csv_Pipeline: # def process_item(self, item, spider): # return item def open_spider(self, spider):self.fp = open(’./jd_computer_message.xlsx’, mode=’w+’, encoding=’utf-8’)self.fp.write(’computer_skutcomputer_titletcomputer_p_shoptcomputer_pricetcomputer_committcomputer_detailn’) def process_item(self, item, spider):# 寫(xiě)入文件try: line = ’t’.join(list(item.values())) + ’n’ self.fp.write(line) return itemexcept: pass def close_spider(self, spider):# 關(guān)閉文件self.fp.close()七、middlewares
class jdDownloaderMiddleware: def process_request(self, request, spider):# 判斷是否是ji_computer_detail的爬蟲(chóng)# 判斷是否是首頁(yè)if spider.name == ’ji_computer_detail’ and re.findall(f’.*(item.jd.com).*’, request.url) == []: options = ChromeOptions() options.add_argument('--headless') driver = webdriver.Chrome(options=options) driver.get(request.url) for i in range(0, 15000, 5000):driver.execute_script(f’window.scrollTo(0, {i})’)time.sleep(0.5) body = driver.page_source.encode() time.sleep(1) return HtmlResponse(url=request.url, body=body, request=request)return None八、使用jupyter進(jìn)行簡(jiǎn)單的處理和分析
其他文件:百度停用詞庫(kù)、簡(jiǎn)體字文件下載第三方包
!pip install seaborn jieba wordcloud PIL -i https://pypi.douban.com/simple
8.1導(dǎo)入第三方包
import reimport osimport jiebaimport wordcloudimport pandas as pdimport numpy as npfrom PIL import Imageimport seaborn as snsfrom docx import Documentfrom docx.shared import Inchesimport matplotlib.pyplot as pltfrom pandas import DataFrame,Series
8.2設(shè)置可視化的默認(rèn)字體和seaborn的樣式
sns.set_style(’darkgrid’)plt.rcParams[’font.sans-serif’] = [’SimHei’]plt.rcParams[’axes.unicode_minus’] = False
8.3讀取數(shù)據(jù)
df_jp = pd.read_excel(’./jd_shop.xlsx’)
8.4篩選Inteli5、i7、i9處理器數(shù)據(jù)
def convert_one(s): if re.findall(f’.*?(i5).*’, str(s)) != []:return re.findall(f’.*?(i5).*’, str(s))[0] elif re.findall(f’.*?(i7).*’, str(s)) != []:return re.findall(f’.*?(i7).*’, str(s))[0] elif re.findall(f’.*?(i9).*’, str(s)) != []:return re.findall(f’.*?(i9).*’, str(s))[0]df_jp[’computer_intel’] = df_jp[’computer_detail’].map(convert_one)
8.5篩選筆記本電腦的屏幕尺寸范圍
def convert_two(s): if re.findall(f’.*?(d+.d+英寸-d+.d+英寸).*’, str(s)) != []:return re.findall(f’.*?(d+.d+英寸-d+.d+英寸).*’, str(s))[0]df_jp[’computer_in’] = df_jp[’computer_detail’].map(convert_two)
8.6將評(píng)論數(shù)轉(zhuǎn)化為整形
def convert_three(s): if re.findall(f’(d+)萬(wàn)+’, str(s)) != []:number = int(re.findall(f’(d+)萬(wàn)+’, str(s))[0]) * 10000return number elif re.findall(f’(d+)+’, str(s)) != []:number = re.findall(f’(d+)+’, str(s))[0]return numberdf_jp[’computer_commit’] = df_jp[’computer_commit’].map(convert_three)
8.7篩選出需要分析的品牌
def find_computer(name, s): sr = re.findall(f’.*({name}).*’, str(s))[0] return srdef convert(s): if re.findall(f’.*(聯(lián)想).*’, str(s)) != []:return find_computer(’聯(lián)想’, s) elif re.findall(f’.*(惠普).*’, str(s)) != []:return find_computer(’惠普’, s) elif re.findall(f’.*(華為).*’, str(s)) != []:return find_computer(’華為’, s) elif re.findall(f’.*(戴爾).*’, str(s)) != []:return find_computer(’戴爾’, s) elif re.findall(f’.*(華碩).*’, str(s)) != []:return find_computer(’華碩’, s) elif re.findall(f’.*(小米).*’, str(s)) != []:return find_computer(’小米’, s) elif re.findall(f’.*(榮耀).*’, str(s)) != []:return find_computer(’榮耀’, s) elif re.findall(f’.*(神舟).*’, str(s)) != []:return find_computer(’神舟’, s) elif re.findall(f’.*(外星人).*’, str(s)) != []:return find_computer(’外星人’, s)df_jp[’computer_p_shop’] = df_jp[’computer_p_shop’].map(convert)
8.8刪除指定字段為空值的數(shù)據(jù)
for n in [’computer_price’, ’computer_commit’, ’computer_p_shop’, ’computer_sku’, ’computer_detail’, ’computer_intel’, ’computer_in’]: index_ls = df_jp[df_jp[[n]].isnull().any(axis=1)==True].index df_jp.drop(index=index_ls, inplace=True)
8.9查看各品牌的平均價(jià)格
plt.figure(figsize=(10, 8), dpi=100)ax = sns.barplot(x=’computer_p_shop’, y=’computer_price’, data=df_jp.groupby(by=’computer_p_shop’)[[’computer_price’]].mean().reset_index())for index,row in df_jp.groupby(by=’computer_p_shop’)[[’computer_price’]].mean().reset_index().iterrows(): ax.text(row.name,row[’computer_price’] + 2,round(row[’computer_price’],2),color='black',ha='center')ax.set_xlabel(’品牌’)ax.set_ylabel(’平均價(jià)格’)ax.set_title(’各品牌平均價(jià)格’)boxplot_fig = ax.get_figure()boxplot_fig.savefig(’各品牌平均價(jià)格.png’, dpi=400)
8.10 查看各品牌的價(jià)格區(qū)間
plt.figure(figsize=(10, 8), dpi=100)ax = sns.boxenplot(x=’computer_p_shop’, y=’computer_price’, data=df_jp.query(’computer_price>500’))ax.set_xlabel(’品牌’)ax.set_ylabel(’價(jià)格區(qū)間’)ax.set_title(’各品牌價(jià)格區(qū)間’)boxplot_fig = ax.get_figure()boxplot_fig.savefig(’各品牌價(jià)格區(qū)間.png’, dpi=400)
8.11 查看價(jià)格與評(píng)論數(shù)的關(guān)系
df_jp[’computer_commit’] = df_jp[’computer_commit’].astype(’int64’)ax = sns.jointplot(x='computer_commit', y='computer_price', data=df_jp, kind='reg', truncate=False,color='m', height=10)ax.fig.savefig(’評(píng)論數(shù)與價(jià)格的關(guān)系.png’)
8.12 查看商品標(biāo)題里出現(xiàn)的關(guān)鍵詞
import imageio# 將特征轉(zhuǎn)換為列表ls = df_jp[’computer_title’].to_list()# 替換非中英文的字符feature_points = [re.sub(r’[^a-zA-Zu4E00-u9FA5]+’,’ ’,str(feature)) for feature in ls]# 讀取停用詞stop_world = list(pd.read_csv(’./百度停用詞表.txt’, engine=’python’, encoding=’utf-8’, names=[’stopwords’])[’stopwords’])feature_points2 = []for feature in feature_points: # 遍歷每一條評(píng)論 words = jieba.lcut(feature) # 精確模式,沒(méi)有冗余.對(duì)每一條評(píng)論進(jìn)行jieba分詞 ind1 = np.array([len(word) > 1 for word in words]) # 判斷每個(gè)分詞的長(zhǎng)度是否大于1 ser1 = pd.Series(words) ser2 = ser1[ind1] # 篩選分詞長(zhǎng)度大于1的分詞留下 ind2 = ~ser2.isin(stop_world) # 注意取反負(fù)號(hào) ser3 = ser2[ind2].unique() # 篩選出不在停用詞表的分詞留下,并去重 if len(ser3) > 0:feature_points2.append(list(ser3))# 將所有分詞存儲(chǔ)到一個(gè)列表中wordlist = [word for feature in feature_points2 for word in feature]# 將列表中所有的分詞拼接成一個(gè)字符串feature_str = ’ ’.join(wordlist) # 標(biāo)題分析font_path = r’./simhei.ttf’shoes_box_jpg = imageio.imread(’./home.jpg’)wc=wordcloud.WordCloud( background_color=’black’, mask=shoes_box_jpg, font_path = font_path, min_font_size=5, max_font_size=50, width=260, height=260,)wc.generate(feature_str)plt.figure(figsize=(10, 8), dpi=100)plt.imshow(wc)plt.axis(’off’)plt.savefig(’標(biāo)題提取關(guān)鍵詞’)
8.13 篩選價(jià)格在4000到5000,聯(lián)想品牌、處理器是i5、屏幕大小在15寸以上的數(shù)據(jù)并查看價(jià)格
df_jd_query = df_jp.loc[(df_jp[’computer_price’] <=5000) & (df_jp[’computer_price’]>=4000) & (df_jp[’computer_p_shop’]=='聯(lián)想') & (df_jp[’computer_intel’]=='i5') & (df_jp[’computer_in’]=='15.0英寸-15.9英寸'), :].copy()plt.figure(figsize=(20, 10), dpi=100)ax = sns.barplot(x=’computer_sku’, y=’computer_price’, data=df_jd_query)ax.set_xlabel(’聯(lián)想品牌SKU’)ax.set_ylabel(’價(jià)格’)ax.set_title(’酷睿i5處理器屏幕15寸以上各SKU的價(jià)格’)boxplot_fig = ax.get_figure()boxplot_fig.savefig(’酷睿i5處理器屏幕15寸以上各SKU的價(jià)格.png’, dpi=400)
8.14 篩選價(jià)格在4000到5000,戴爾品牌、處理器是i7、屏幕大小在15寸以上的數(shù)據(jù)并查看價(jià)格
df_jp_daier = df_jp.loc[(df_jp[’computer_price’] <=5000) & (df_jp[’computer_price’]>=4000) & (df_jp[’computer_p_shop’]=='戴爾') & (df_jp[’computer_intel’]=='i7') & (df_jp[’computer_in’]=='15.0英寸-15.9英寸'), :].copy()plt.figure(figsize=(10, 8), dpi=100)ax = sns.barplot(x=’computer_sku’, y=’computer_price’, data=df_jp_daier)ax.set_xlabel(’戴爾品牌SKU’)ax.set_ylabel(’價(jià)格’)ax.set_title(’酷睿i7處理器屏幕15寸以上各SKU的價(jià)格’)boxplot_fig = ax.get_figure()boxplot_fig.savefig(’酷睿i7處理器屏幕15寸以上各SKU的價(jià)格.png’, dpi=400)
8.15 不同Intel處理器品牌的價(jià)格
plt.figure(figsize=(10, 8), dpi=100)ax = sns.barplot(x=’computer_p_shop’, y=’computer_price’, data=df_jp, hue=’computer_intel’)ax.set_xlabel(’品牌’)ax.set_ylabel(’價(jià)格’)ax.set_title(’不同酷睿處理器品牌的價(jià)格’)boxplot_fig = ax.get_figure()boxplot_fig.savefig(’不同酷睿處理器品牌的價(jià)格.png’, dpi=400)
8.16 不同尺寸品牌的價(jià)格
plt.figure(figsize=(10, 8), dpi=100)ax = sns.barplot(x=’computer_p_shop’, y=’computer_price’, data=df_jp, hue=’computer_in’)ax.set_xlabel(’品牌’)ax.set_ylabel(’價(jià)格’)ax.set_title(’不同尺寸品牌的價(jià)格’)boxplot_fig = ax.get_figure()boxplot_fig.savefig(’不同尺寸品牌的價(jià)格.png’, dpi=400)
以上就是python基于scrapy爬取京東筆記本電腦數(shù)據(jù)并進(jìn)行簡(jiǎn)單處理和分析的詳細(xì)內(nèi)容,更多關(guān)于python 爬取京東數(shù)據(jù)的資料請(qǐng)關(guān)注好吧啦網(wǎng)其它相關(guān)文章!
相關(guān)文章:
1. ASP 信息提示函數(shù)并作返回或者轉(zhuǎn)向2. ajax post下載flask文件流以及中文文件名問(wèn)題3. IntelliJ IDEA刪除類(lèi)的方法步驟4. layui的checbox在Ajax局部刷新下的設(shè)置方法5. ajax實(shí)現(xiàn)頁(yè)面的局部加載6. idea導(dǎo)入maven項(xiàng)目的方法7. 刪除docker里建立容器的操作方法8. docker /var/lib/docker/aufs/mnt 目錄清理方法9. XML入門(mén)的常見(jiàn)問(wèn)題(四)10. jsp網(wǎng)頁(yè)實(shí)現(xiàn)貪吃蛇小游戲
